Homework #8, PHY 674, 8 November 1995

Problem X37:

Find the character of the electric dipole operator \vec{r} for the following symmetry groups: O, O_h , T_d , D_{2h} , D_{4h} . Are these characters irreducible? If not, break them up into irreducible components.

Solution:

Group	O	O_h	T_d	D_{2h}	D_{4h}
\vec{r}	Γ_{15}	Γ_{15}	Γ_{15}	$B_{1u} \oplus B_{2u} \oplus B_{3u}$	$A_{2u} \oplus E_u$

Problem X38:

Do the same for the magnetic dipole operator proportional to $\vec{L} = \vec{r} \times \vec{p}$.

Solution:

Group	0	O_h	T_d	D_{2h}	D_{4h}
\vec{L}	Γ_{15}	Γ'_{15}	Γ_{25}	$B_{1g}\oplus B_{2g}\oplus B_{3g}$	$A_{2g} \oplus E_g$

Problem X39:

For the groups T_d and D_{2h} , find all allowed electric and magnetic dipole transitions. Which of the phonons (at $\vec{k} = 0$) of YBa₂Cu₃O₆ and YBa₂Cu₃O₇ are infrared active?

Solution:

For electric dipole transitions (belonging to the irreducible representation Γ_{15} in T_d), we have to find the characters $\Gamma_i \otimes \Gamma_{15}$ and decompose them. For magnetic dipole transitions, we need to find $\Gamma_i \otimes \Gamma_{25}$. As an example illustrating how to read the table: Electric dipole transitions from a Γ_1 state are allowed to a Γ_{15} state and forbidden to all other states. From a Γ_2 state, only transitions to Γ_{25} are allowed. From a Γ_{15} state, only transitions to Γ_2 are forbidden, all others allowed.

$\Gamma_i(T_d)$	Γ_1	Γ_2	Γ_{12}	Γ_{15}	Γ_{25}
$\Gamma_i \otimes \Gamma_{15}$	Γ_{15}	Γ_{25}	$\Gamma_{15} \oplus \Gamma_{25}$	$\Gamma_1 \oplus \Gamma_{12} \oplus \Gamma_{15} \oplus \Gamma_{25}$	$\Gamma_2 \oplus \Gamma_{12} \oplus \Gamma_{15} \oplus \Gamma_{25}$
$\Gamma_i \otimes \Gamma_{25}$	Γ_{25}	Γ_{15}	$\Gamma_{15} \oplus \Gamma_{25}$	$\Gamma_2 \oplus \Gamma_{12} \oplus \Gamma_{15} \oplus \Gamma_{25}$	$\Gamma_1 \oplus \Gamma_{12} \oplus \Gamma_{15} \oplus \Gamma_{25}$

For D_{2h} (for example the crystal YBa₂Cu₃O₇), the electric dipole operator breaks up into the representations $B_{1u} \oplus B_{2u} \oplus B_{3u}$. The magnetic dipole operator breaks up into $B_{1g} \oplus B_{2g} \oplus B_{3g}$. The infrared-active phonons are B_{1u} , B_{2u} , and B_{3u} .

$\Gamma_i(D_{2h})$	A_g	B_{1g}	B_{2g}	B_{3g}	A_u	B_{1u}	B_{2u}	B_{3u}
$B_{1u}\otimes\Gamma_i$	B_{1u}	A_u	B_{3u}	B_{2u}	B_{1g}	A_g	B_{3g}	B_{2g}
$B_{1g}\otimes\Gamma_i$								
$B_{2u}\otimes\Gamma_i$	B_{2u}	B_{3u}	A_u	B_{1u}	B_{2g}	B_{3g}	A_g	B_{1g}
$B_{2g}\otimes\Gamma_i$	B_{2g}	B_{3g}	A_g	B_{1g}	B_{2u}	B_{3u}	A_u	B_{1u}
$B_{3u}\otimes\Gamma_i$	B_{3u}	B_{2u}	B_{1u}	A_u	B_{3g}	B_{2g}	B_{1g}	A_g
$B_{3g}\otimes\Gamma_i$								

We also need to do the same for the group D_{4h} in order to study the optical transitions in the YBa₂Cu₃O₆ compound. Here, the electric dipole operator breaks up into the irreducible representations $A_{2u} \oplus E_u$. Therefore, the infrared active phonons have the symmetry A_{2u} or E_u . The allowed electric dipole transitions can be found from the following table.

$\Gamma_i(D_{2h})$	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
$A_{2u}\otimes\Gamma_i$	A_{2u}	A_{1u}	B_{2u}	B_{1u}	E_u	A_{2g}	A_{1g}	B_{2g}	B_{1g}	
$E_u \otimes \Gamma_i$	E_u	E_u	E_u	E_u	$A_{1u} \oplus A_{2u} \oplus B_{1u} \oplus B_{2v}$	E_g	E_g	E_g	E_g	$A_{1g} \oplus A_{2g} \oplus B_{1g} \oplus B_{2g}$

Problem X40:

See the review article by Koster in Solid State Physics, Ref. [25] in the script, particularly the sections starting on page 174 and 229.

Problem X41:

See Koster.